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1 INTRODUCTION 

1.1 Background 

The concentration of Dissolved Oxygen (DO) 
serves as an important indicator of the overall 
health of estuarine ecosystems. Understanding 
the multifaceted determinants that impact DO 
levels is an essential precursor to formulating 
environmentally responsible engineering projects 
in the marine environment. 
 
For many years, analytical tools for dissolved 
oxygen (DO) modeling have concentrated 
primarily on variability across daily, synoptic, 
seasonal, and annual timescales. This focus is in 
acknowledgment of the intricate interplay of 
biogeochemical processes operating within this 
broad spectrum of temporal dynamics. However, 
with the advent of continuously recording DO 
sensors, there are new opportunities to develop 
high-temporal-resolution databases and DO 
models (e.g., Lucas, 2010; Lovato et al., 2013). 
Moreover, there is an increasing awareness of the 
importance of short-term, water quality  
variability within estuarine environments (e.g., 
Lucas et al., 2006; Hubertz and Cahoon, 1999; 

Nezlin et al., 2009) – especially in certain 
mesotidal, eutrophic estuaries. This paper 
provides an example of how the collection of 
high-temporal-resolution monitoring data (Marr 
et al., 2014) may further resolve short-term DO 
variability, quantify associated fate and transport 
processes, and provide an opportunity to improve 
preliminary water quality modeling and 
monitoring practices. 
 
State-of-the-art estuarine modeling practices 
couple three-dimensional hydrodynamic and 
water quality models to simulate DO variability 
(Ji 2017). Deterministic water quality model 
formulations typically include fate and transport 
equations for multiple (typically 20+) state 
variables, each having source/sink terms. The 
coupled, biogeochemical transformation or 
reaction equations for these terms include many 
user-prescribed rate constants and source/sink 
terms that are not always well-constrained (e.g., 
Ganju et al., 2016). Consequently, there is always 
a chance that some kinetic processes may be 
over/underestimated, and that physical 
parameters may be adjusted unnecessarily to 
rectify inaccuracies. 
 

Diagnostic DO Transport Model for Narrow, Tidally Dominated Estuary  

J.L DiLorenzoa*, H.S. Litwackb, G. R. Marinoc, P-S. Huangd and T. O. Najariane 
a Senior Oceanographer, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
b Senior Environmental Scientist, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA  
c Senior Environmental Analyst, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
d Senior Modeler, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
e President, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
 
*Corresponding author: Joseph L. DiLorenzo, PhD, Senior Oceanographer, dilorenzo@najarian.com 
 

ABSTRACT: In 2010, an in-situ field-monitoring program was conducted in the Hackensack River Estuary 
(HRE) -- a narrow, tidally dominated, urban estuary located in New Jersey, USA. This program included: (1) 
automated sampling of Dissolved Oxygen (DO) concentrations, tidal elevations, currents, and other 
environmental variables, collected at several fixed mooring sites; and (2) discrete grab samples of DO and 
nutrient concentrations collected during an intensive field survey. The resulting dataset revealed the well-mixed 
characteristics of the Hackensack River Estuary (HRE), and tidal fluctuations of DO that were comparable to 
long-term variations. As a prelude to more complex modeling, a simple diagnostic model is developed to 
simulate fate and transport processes that control short-term DO variability in the lower reaches of the HRE 
directly from the combined datasets. The outcomes provide insights into the dominant dynamic processes and 
the impact of tides on the DO regime within the estuary’s lower reach during the monitoring period. Such 
processes include tidal pumping, which imports DO into the lower HRE and disperses oxygen-demanding 
substances near a major point source. The present approach illustrates how simple diagnostic models may be 
used, in some circumstances, to synthesize available monitoring data, reveal dominant estuarine transport 
processes, and provide preliminary information that may better constrain future prognostic numerical model 
applications. 

 
 
 
 
 
 
 
 

 

KEYWORDS: Keyword1, Keyword2, Keyword3. Immediately after the abstract, provide a maximum of 6 
keywords, avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Also, avoid 
using words that are already in the title. Be sparing with abbreviations: only abbreviations firmly established in 
the field may be eligible. These keywords will be used for indexing purposes. 

 

 

 
 

 
 

 
 
 
 

 
KEYWORDS: estuaries, dissolved oxygen (DO), estuarine fate and transport processes, in-situ monitoring, 

diagnostic models, tidal variability, dispersion, water quality, hypoxia, DO dynamics

1 INTRODUCTION 

1.1 Background 

The concentration of Dissolved Oxygen (DO) 
serves as an important indicator of the overall 
health of estuarine ecosystems. Understanding 
the multifaceted determinants that impact DO 
levels is an essential precursor to formulating 
environmentally responsible engineering projects 
in the marine environment. 
 
For many years, analytical tools for dissolved 
oxygen (DO) modeling have concentrated 
primarily on variability across daily, synoptic, 
seasonal, and annual timescales. This focus is in 
acknowledgment of the intricate interplay of 
biogeochemical processes operating within this 
broad spectrum of temporal dynamics. However, 
with the advent of continuously recording DO 
sensors, there are new opportunities to develop 
high-temporal-resolution databases and DO 
models (e.g., Lucas, 2010; Lovato et al., 2013). 
Moreover, there is an increasing awareness of the 
importance of short-term, water quality  
variability within estuarine environments (e.g., 
Lucas et al., 2006; Hubertz and Cahoon, 1999; 

Nezlin et al., 2009) – especially in certain 
mesotidal, eutrophic estuaries. This paper 
provides an example of how the collection of 
high-temporal-resolution monitoring data (Marr 
et al., 2014) may further resolve short-term DO 
variability, quantify associated fate and transport 
processes, and provide an opportunity to improve 
preliminary water quality modeling and 
monitoring practices. 
 
State-of-the-art estuarine modeling practices 
couple three-dimensional hydrodynamic and 
water quality models to simulate DO variability 
(Ji 2017). Deterministic water quality model 
formulations typically include fate and transport 
equations for multiple (typically 20+) state 
variables, each having source/sink terms. The 
coupled, biogeochemical transformation or 
reaction equations for these terms include many 
user-prescribed rate constants and source/sink 
terms that are not always well-constrained (e.g., 
Ganju et al., 2016). Consequently, there is always 
a chance that some kinetic processes may be 
over/underestimated, and that physical 
parameters may be adjusted unnecessarily to 
rectify inaccuracies. 
 

Diagnostic DO Transport Model for Narrow, Tidally Dominated Estuary  

J.L DiLorenzoa*, H.S. Litwackb, G. R. Marinoc, P-S. Huangd and T. O. Najariane 
a Senior Oceanographer, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
b Senior Environmental Scientist, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA  
c Senior Environmental Analyst, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
d Senior Modeler, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
e President, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
 
*Corresponding author: Joseph L. DiLorenzo, PhD, Senior Oceanographer, dilorenzo@najarian.com 
 

ABSTRACT: In 2010, an in-situ field-monitoring program was conducted in the Hackensack River Estuary 
(HRE) -- a narrow, tidally dominated, urban estuary located in New Jersey, USA. This program included: (1) 
automated sampling of Dissolved Oxygen (DO) concentrations, tidal elevations, currents, and other 
environmental variables, collected at several fixed mooring sites; and (2) discrete grab samples of DO and 
nutrient concentrations collected during an intensive field survey. The resulting dataset revealed the well-mixed 
characteristics of the Hackensack River Estuary (HRE), and tidal fluctuations of DO that were comparable to 
long-term variations. As a prelude to more complex modeling, a simple diagnostic model is developed to 
simulate fate and transport processes that control short-term DO variability in the lower reaches of the HRE 
directly from the combined datasets. The outcomes provide insights into the dominant dynamic processes and 
the impact of tides on the DO regime within the estuary’s lower reach during the monitoring period. Such 
processes include tidal pumping, which imports DO into the lower HRE and disperses oxygen-demanding 
substances near a major point source. The present approach illustrates how simple diagnostic models may be 
used, in some circumstances, to synthesize available monitoring data, reveal dominant estuarine transport 
processes, and provide preliminary information that may better constrain future prognostic numerical model 
applications. 

 
 
 
 
 
 
 
 

 

KEYWORDS: Keyword1, Keyword2, Keyword3. Immediately after the abstract, provide a maximum of 6 
keywords, avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Also, avoid 
using words that are already in the title. Be sparing with abbreviations: only abbreviations firmly established in 
the field may be eligible. These keywords will be used for indexing purposes. 

 

 

 
 

 
 

 
 
 
 

 
KEYWORDS: estuaries, dissolved oxygen (DO), estuarine fate and transport processes, in-situ monitoring, 

diagnostic models, tidal variability, dispersion, water quality, hypoxia, DO dynamics

1 INTRODUCTION 

1.1 Background 

The concentration of Dissolved Oxygen (DO) 
serves as an important indicator of the overall 
health of estuarine ecosystems. Understanding 
the multifaceted determinants that impact DO 
levels is an essential precursor to formulating 
environmentally responsible engineering projects 
in the marine environment. 
 
For many years, analytical tools for dissolved 
oxygen (DO) modeling have concentrated 
primarily on variability across daily, synoptic, 
seasonal, and annual timescales. This focus is in 
acknowledgment of the intricate interplay of 
biogeochemical processes operating within this 
broad spectrum of temporal dynamics. However, 
with the advent of continuously recording DO 
sensors, there are new opportunities to develop 
high-temporal-resolution databases and DO 
models (e.g., Lucas, 2010; Lovato et al., 2013). 
Moreover, there is an increasing awareness of the 
importance of short-term, water quality  
variability within estuarine environments (e.g., 
Lucas et al., 2006; Hubertz and Cahoon, 1999; 

Nezlin et al., 2009) – especially in certain 
mesotidal, eutrophic estuaries. This paper 
provides an example of how the collection of 
high-temporal-resolution monitoring data (Marr 
et al., 2014) may further resolve short-term DO 
variability, quantify associated fate and transport 
processes, and provide an opportunity to improve 
preliminary water quality modeling and 
monitoring practices. 
 
State-of-the-art estuarine modeling practices 
couple three-dimensional hydrodynamic and 
water quality models to simulate DO variability 
(Ji 2017). Deterministic water quality model 
formulations typically include fate and transport 
equations for multiple (typically 20+) state 
variables, each having source/sink terms. The 
coupled, biogeochemical transformation or 
reaction equations for these terms include many 
user-prescribed rate constants and source/sink 
terms that are not always well-constrained (e.g., 
Ganju et al., 2016). Consequently, there is always 
a chance that some kinetic processes may be 
over/underestimated, and that physical 
parameters may be adjusted unnecessarily to 
rectify inaccuracies. 
 

Diagnostic DO Transport Model for Narrow, Tidally Dominated Estuary  

J.L DiLorenzoa*, H.S. Litwackb, G. R. Marinoc, P-S. Huangd and T. O. Najariane 
a Senior Oceanographer, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
b Senior Environmental Scientist, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA  
c Senior Environmental Analyst, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
d Senior Modeler, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
e President, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
 
*Corresponding author: Joseph L. DiLorenzo, PhD, Senior Oceanographer, dilorenzo@najarian.com 
 

ABSTRACT: In 2010, an in-situ field-monitoring program was conducted in the Hackensack River Estuary 
(HRE) -- a narrow, tidally dominated, urban estuary located in New Jersey, USA. This program included: (1) 
automated sampling of Dissolved Oxygen (DO) concentrations, tidal elevations, currents, and other 
environmental variables, collected at several fixed mooring sites; and (2) discrete grab samples of DO and 
nutrient concentrations collected during an intensive field survey. The resulting dataset revealed the well-mixed 
characteristics of the Hackensack River Estuary (HRE), and tidal fluctuations of DO that were comparable to 
long-term variations. As a prelude to more complex modeling, a simple diagnostic model is developed to 
simulate fate and transport processes that control short-term DO variability in the lower reaches of the HRE 
directly from the combined datasets. The outcomes provide insights into the dominant dynamic processes and 
the impact of tides on the DO regime within the estuary’s lower reach during the monitoring period. Such 
processes include tidal pumping, which imports DO into the lower HRE and disperses oxygen-demanding 
substances near a major point source. The present approach illustrates how simple diagnostic models may be 
used, in some circumstances, to synthesize available monitoring data, reveal dominant estuarine transport 
processes, and provide preliminary information that may better constrain future prognostic numerical model 
applications. 

 
 
 
 
 
 
 
 

 

KEYWORDS: Keyword1, Keyword2, Keyword3. Immediately after the abstract, provide a maximum of 6 
keywords, avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Also, avoid 
using words that are already in the title. Be sparing with abbreviations: only abbreviations firmly established in 
the field may be eligible. These keywords will be used for indexing purposes. 

 

 

 
 

 
 

 
 
 
 

 
KEYWORDS: estuaries, dissolved oxygen (DO), estuarine fate and transport processes, in-situ monitoring, 

diagnostic models, tidal variability, dispersion, water quality, hypoxia, DO dynamics

1 INTRODUCTION 

1.1 Background 

The concentration of Dissolved Oxygen (DO) 
serves as an important indicator of the overall 
health of estuarine ecosystems. Understanding 
the multifaceted determinants that impact DO 
levels is an essential precursor to formulating 
environmentally responsible engineering projects 
in the marine environment. 
 
For many years, analytical tools for dissolved 
oxygen (DO) modeling have concentrated 
primarily on variability across daily, synoptic, 
seasonal, and annual timescales. This focus is in 
acknowledgment of the intricate interplay of 
biogeochemical processes operating within this 
broad spectrum of temporal dynamics. However, 
with the advent of continuously recording DO 
sensors, there are new opportunities to develop 
high-temporal-resolution databases and DO 
models (e.g., Lucas, 2010; Lovato et al., 2013). 
Moreover, there is an increasing awareness of the 
importance of short-term, water quality  
variability within estuarine environments (e.g., 
Lucas et al., 2006; Hubertz and Cahoon, 1999; 

Nezlin et al., 2009) – especially in certain 
mesotidal, eutrophic estuaries. This paper 
provides an example of how the collection of 
high-temporal-resolution monitoring data (Marr 
et al., 2014) may further resolve short-term DO 
variability, quantify associated fate and transport 
processes, and provide an opportunity to improve 
preliminary water quality modeling and 
monitoring practices. 
 
State-of-the-art estuarine modeling practices 
couple three-dimensional hydrodynamic and 
water quality models to simulate DO variability 
(Ji 2017). Deterministic water quality model 
formulations typically include fate and transport 
equations for multiple (typically 20+) state 
variables, each having source/sink terms. The 
coupled, biogeochemical transformation or 
reaction equations for these terms include many 
user-prescribed rate constants and source/sink 
terms that are not always well-constrained (e.g., 
Ganju et al., 2016). Consequently, there is always 
a chance that some kinetic processes may be 
over/underestimated, and that physical 
parameters may be adjusted unnecessarily to 
rectify inaccuracies. 
 

Diagnostic DO Transport Model for Narrow, Tidally Dominated Estuary  

J.L DiLorenzoa*, H.S. Litwackb, G. R. Marinoc, P-S. Huangd and T. O. Najariane 
a Senior Oceanographer, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
b Senior Environmental Scientist, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA  
c Senior Environmental Analyst, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
d Senior Modeler, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
e President, Najarian Associates, 1 Industrial Way West, Eatontown, New Jersey, USA 
 
*Corresponding author: Joseph L. DiLorenzo, PhD, Senior Oceanographer, dilorenzo@najarian.com 
 

ABSTRACT: In 2010, an in-situ field-monitoring program was conducted in the Hackensack River Estuary 
(HRE) -- a narrow, tidally dominated, urban estuary located in New Jersey, USA. This program included: (1) 
automated sampling of Dissolved Oxygen (DO) concentrations, tidal elevations, currents, and other 
environmental variables, collected at several fixed mooring sites; and (2) discrete grab samples of DO and 
nutrient concentrations collected during an intensive field survey. The resulting dataset revealed the well-mixed 
characteristics of the Hackensack River Estuary (HRE), and tidal fluctuations of DO that were comparable to 
long-term variations. As a prelude to more complex modeling, a simple diagnostic model is developed to 
simulate fate and transport processes that control short-term DO variability in the lower reaches of the HRE 
directly from the combined datasets. The outcomes provide insights into the dominant dynamic processes and 
the impact of tides on the DO regime within the estuary’s lower reach during the monitoring period. Such 
processes include tidal pumping, which imports DO into the lower HRE and disperses oxygen-demanding 
substances near a major point source. The present approach illustrates how simple diagnostic models may be 
used, in some circumstances, to synthesize available monitoring data, reveal dominant estuarine transport 
processes, and provide preliminary information that may better constrain future prognostic numerical model 
applications. 

 
 
 
 
 
 
 
 

 

KEYWORDS: Keyword1, Keyword2, Keyword3. Immediately after the abstract, provide a maximum of 6 
keywords, avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Also, avoid 
using words that are already in the title. Be sparing with abbreviations: only abbreviations firmly established in 
the field may be eligible. These keywords will be used for indexing purposes. 

 

 

 
 

 
 

 
 
 
 

1    INTRODUCTION

Coastal and Offshore Science and Engineering  
 Year II – 2023 – ISSN 2785-797240



Occasionally, simplified diagnostic models are 
used to help evaluate estuarine fate and transport 
processes directly and independently from field-
monitoring data. Such models may provide a 
transparent means for identifying predominant 
estuarine controls prior to the application of 
complex numerical models. Though they may be 
based on intensive monitoring data, such models 
are constrained by their lack of predictive 
capabilities and often overlook crucial 
interactions essential for management 
applications. Nevertheless, information gleaned 
from such preliminary modeling procedures may 
serve as a valuable foundation for the refinement 
of more sophisticated models. 
 
For example, Shen et al. (2008) use a simple, one-
dimensional diagnostic model to characterize DO 
dynamics, and episodes of hypoxia, in the North 
Branch of Onancock Creek -- a small, well mixed 
estuary located along the Chesapeake Bay on 
Virginia’s eastern shore. During dry summer 
periods, this estuary exhibits strong, diurnal DO 
oscillations, interspersed by periods of 
suppressed DO levels after large rainfall events. 
Given the limited influence of local tidal currents, 
the modeled DO dynamics in this context are 
shown to be controlled by phytoplankton, 
macroalgae, surface reaeration, net DO transport 
and organic carbon respiration. In contrast, tidal 
controls are dominant in the lower reaches of the 
urbanized HRE (DiLorenzo et al., 2004) – the 
area of the present diagnostic model study. 

1.2 HRE Characteristics 

The Hackensack River Estuary (HRE) constitutes 
a slender inland extension of the New York 
Harbor complex. It extends approximately 35 km 
southward from its head of tide at the Oradell 
Dam to its mouth, where it converges with the 
Upper Newark Bay and the Passaic River (Fig. 1). 
The HRE has an average centerline depth of 
approximately 7.6 m, with typical and maximum 
widths of approximately 150 m and 600 m, 
respectively. Mean tidal ranges vary from 1.59 m 
(at the mouth) to approximately 1.83 m (at the 
head). Above the HRE, the upper (non-tidal) 
Hackensack River drains a 292.7-km2 watershed 
area and culminates at a large impoundment 
known as the Oradell Reservoir. Due to large 
reservoir withdrawals, the long-term-average 
freshwater inflow to the HRE (10.9 m3s-1) is small 
relative to the mean tidal discharge at the mouth 
(approximately 1,200m3s-1; Najarian Associates, 
1990). A substantial proportion of the freshwater 
inflow, averaging around 33%, is contributed by 
a single municipal discharger, the Bergen County 

Utility Authority’s (BCUA’s) wastewater 
treatment plant (situated at km 20). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The HRE and adjacent tidal waterways 
 
The average ratio of tidal to freshwater flow, 
approximately 110, is reflected in the system’s 
low vertical salinity stratification (typically <1 
psu), and low Estuarine Richardson Number 
(typically <0.001), as reported in previous studies 
(Najarian Associates, 1990, 2015). Due to its 
limited influx of fresh water and indirect 
connection with the open sea, the HRE undergoes 
a protracted flushing process and is intrinsically 
vulnerable to various sources of pollutants. These 
include wastewater dischargers, combined/storm 
sewers, local landfills, sediment deposits, 
upstream let-downs, atmospheric depositions and 
tidal exchange with Newark Bay. The HRE is 
further characterized by high nutrient levels and 
high algal productivity (e.g., Jung et al. 2021).  
 
Phytoplankton assemblages in the upper HRE 
typically exhibit distinct characteristics 
throughout different seasons. During late autumn, 
winter, and spring, diatoms predominate, as 
observed in the study conducted by Foote (1983). 
Notable representatives within this diatom 
community include the resilient nanoplankton 
species Cyclotella menegheniana and 
Coscinodiscus rothii. In contrast, green algae 
assume dominance during dry summer 
conditions. However, blue-green algae persist 
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consistently and experience proliferation during 
prolonged wet-weather periods. 

1.3 Observed DO Variability 

The discernible impact of tidal forces on water 
quality within the Hackensack River Estuary 
(HRE) is evident through the analysis of field data 
collected in 2010 (ARCADIS, 2013). Tab. 1 
provides an extensive outline of the 
comprehensive sampling strategy, which 
included continuous, long-term monitoring at 
several stations (Fig. 1) and a concentrated series 
of grab sampling activities carried out over a 5-
day period.  
 
Table 1: Overview of HRE field-sampling design during 

summer of 2010 
 
Measured 
Variable* 

Station 
Location 

Sampling 
Frequency 

tidal elev. H1-H6 6 min. 
ADCP cur. vel. H1, H4 15 min. 
DO, T, cond. pH. W1-W5 15 min. 

TSS, chl-a, 
CBOD5, NH3, 
NO3-, NO2-, 
TKN, TP, OP, 
TOC, 

 DOC 

W1-W5 3 hours 

SOD, sed. TOC W1, 
W3, W5 

(monthly, 5 
replicates) 

*KEY: TSS = total suspended solids; 
CBOD5 = five-day carbonaceous biochemical 
oxygen demand; NH3 = ammonia; NO3- = 
nitrate; NO2- = nitrite; TKN = Total Kjeldahl 
nitrogen; TP = total phosphorus; TOC = total 
organic carbon; DOC = dissolved organic carbon;  
SOD = sediment oxygen demand. 
 
Intensive data sampling included measurements 
of DO, Temperature, Turbidity, Conductivity, 
Salinity and pH,with readings taken every 15 
minutes, at one-third and two-thirds depths, using 
YSI 6920V2-1 sondes. Additionally, tidal 
elevations were sampled every 6 minutes at up to 
six stations (W1 – W6 in Fig. 1) through the use 
of an Onset HOBO 30-foot depth titanium data 
logger (model U20-001-01-Ti). Tidal currents 
were sampled at 15-minute intervals at two 
stations (i.e., W1 and W4) using workhorse 
Sentinel Acoustic Doppler Current Profilers 
(ADCPs). 
 
Fig. 2 displays a continuous dataset of DO 
measurements collected during June, 2010 at six 
distinct estuarine stations (referenced W1-W6). 
At lower-estuary stations W1 and W2, DO 
variations primarily exhibit semi-diurnal patterns 

and are synchronized with the tidal fluctuations 
Furthermore, the data reveal features associated 
with diurnal inequality, signifying unequal tidal 
ranges within a day, as well as fortnightly 
variability in the DO time series. In terms of 
vertical variability, the DO data reveal 
predominantly unstratified conditions.  
 
At up-estuary stations W4, W5 and W6, DO 
variations exhibit considerable magnitude and 
erratic behavior. These fluctuations are primarily 
dominated by diurnal, semi-diurnal and longer-
period influences. Moreover, at stations W5 and 
W6, short-term DO concentrations appear to be 
inversely associated with tidal activity, with peak 
concentrations occurring near low tide and with 
depressed, minimum DO concentrations 
occurring near high tide. Such inverse 
correlations between tidal height and DO 
concentration are indicative of potential 
influences from downstream point sources. These 
observations suggest that tidal advection of a 
mean longitudinal DO gradient may constitute a 
dominant process in the lower reaches of the 
HRE. To explore this issue, a simplified model 
was developed based on available monitoring 
data. The model was applied to the lower reaches 
of the HRE as a preliminary step before engaging 
in more detailed numerical model analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Coastal and Offshore Science and Engineering  
 Year II – 2023 – ISSN 2785-797242



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Time series plots of DO monitoring data at HRE 
stations W1 (upper panel) through station W6 (bottom 
panel) during June 2010. “DO Top” measurements applied 
at one-third depth; “DO Bot” at two-thirds depth.  
 
2 MODEL DEVELOPMENT 

2.1 Model Formulation 

A simplified model is developed based on the 
continuous/intensive monitoring data and the 
narrow/shallow characteristics of the lower HRE. 
As noted above, vertical density stratification is 
relatively weak in this tidally dominated estuarine 
system (Fig. 3, top two panels). Likewise, vertical 
stratification of the sampled water quality 
variables is typically weak (Fig. 2 and Fig. 3). 
Thus, the formulation of a vertically integrated 
model is deemed appropriate for this case. 
 
Lateral variability is not expected to be high in 
narrow reaches of well-mixed estuaries. 
Following Fischer et al. (1979 page 277), a 
representative time scale (t) for lateral mixing 
may be estimated from a representative width (W) 
and lateral dispersion coefficient (εt) of 
approximately 0.4 m2/sec, a value applicable to a 
wide tidal river. 

 
𝑡𝑡~ 0.4𝑊𝑊2

𝜀𝜀𝑡𝑡
= 0.4∗(150𝑚𝑚)2

0.4𝑚𝑚2
𝑠𝑠⁄ = 6.3ℎ𝑟𝑟𝑟𝑟  (1) 

This characteristic lateral mixing time is much 
shorter than estimated flushing times for the 
estuary, which are on the order of several tens of 
days. Therefore, lateral variations are also omitted 
from consideration in this preliminary model.  

 
Accordingly, DO concentrations and other 
variables are assumed to exhibit uniformity in 
both the vertical and lateral dimensions. 
Consequently, the ensuing one-dimensional 
momentum and constituent transport equations 
are formulated below (Eqs. 2 and 3) as follows: 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Representative continuous/discrete data collected 
at station W2 during the intensive field survey conducted 
during August 9-14, 2010. 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑔𝑔 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑔𝑔ℎ

2𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕 + 𝐶𝐶𝐷𝐷𝜕𝜕|𝜕𝜕|

ℎ
= 0     

(a), (b), (c), (d), (e)     (2) 
 
 
𝜕𝜕[𝐷𝐷𝐷𝐷]

𝜕𝜕𝜕𝜕 ≈ −𝑢𝑢 𝜕𝜕[𝐷𝐷𝐷𝐷]
𝜕𝜕𝜕𝜕 + 𝜕𝜕

𝜕𝜕𝜕𝜕 (𝐾𝐾 𝜕𝜕[𝐷𝐷𝐷𝐷]
𝜕𝜕𝜕𝜕 ) −

𝑘𝑘𝐶𝐶
[𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷5]
1−𝑒𝑒−5𝑘𝑘𝐶𝐶 𝜃𝜃𝑇𝑇−20 + 4.33𝑘𝑘𝑁𝑁[𝑇𝑇𝐾𝐾𝑇𝑇] +

 𝑘𝑘𝑠𝑠([𝐷𝐷𝐷𝐷]𝑠𝑠 − [𝐷𝐷𝐷𝐷]) − 𝑆𝑆𝐷𝐷𝐷𝐷 + 1.3 ∗ 2.67 ∗

𝑃𝑃𝑚𝑚
𝐼𝐼
𝐼𝐼𝑠𝑠

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝐼𝐼
𝐼𝐼𝑠𝑠

) 𝜃𝜃1
𝑇𝑇−20𝐵𝐵 ∗ 𝛼𝛼 − 2.67 ∗ 𝑘𝑘𝑟𝑟 ∗ 𝛼𝛼 ∗

𝐵𝐵 ∗ 𝜃𝜃2
𝑇𝑇−20          

(a), (b), (c), (d), (e), (f), (g), (h), (i)                (3)

 

2    MODEL DEVELOPMENT
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KEY: 
t = time; 
x = along-axis distance (positive landward); 
u = vertically averaged, along axis current 
velocity component (positive landward); 
η = water surface elevation 
ρ = water density 
g = gravitational acceleration 
h = average water depth 
CD = drag coefficient 
[DO] = dissolved oxygen concentration; 
[DO]s = dissolved oxygen saturation 
concentration  
SOD = sediment oxygen demand 
K = along-channel dispersion coefficient 
I = irradiance  
Is = saturation value of the irradiance  
T = water temperature 
kC = CBOD decay coefficient 
kN = ammonia decay coefficient 
ks = reaeration rate coefficient formulated as: 
7.6u h-1.333 times 1.024(T-20) 
Pm = maximum production rate  
kr = respiration constant 
𝜃𝜃2 = temperature adjustment factor (typically ~ 
1.047) 
B = algal biomass 
[chl-a] = chlorophyll-a concentration 
α = chlorophyll-a to carbon conversion factor 
 
The simplified momentum balance equation (Eq. 
2) encapsulates the influence of tidal processes 
within a shallow channel (LeBlond, 1978). 
Terms ‘a’ and ‘b’ represent the local and 
advective accelerations; terms ‘c’ and ‘e’ 
represent the surface slope and bottom friction 
terms, respectively. Despite assuming the 
domain to be predominantly well-mixed both 
vertically and laterally, an additional term ‘d’ 
(i.e., the baroclinic component of the pressure 
gradient) is included to account for minor 
contributions originating from density 
variations. Wind forcing is neglected here due to 
the limited fetch within the system. 
 
The simplified fate and transport equation (Eq. 
3) employed for this 5-day simulation bears 
similarity to the equation utilized by Shen et al. 
(2008), albeit with a significant addition 
pertaining to tidal advection. Term ‘a’ of Eq. 3 
denotes the rate of change of dissolved oxygen 
concentration over time. Term ‘b’ represents the 
advective transport of dissolved oxygen along 

the channel, aligned with the principal axis. 
Term ‘c’ represents the corresponding dispersive 
transport. Collectively, terms ‘d’ and ‘e’ 
represent the ultimate biochemical oxygen 
demand (UBOD), encompassing both 
carbonaceous and nitrogenous components, with 
expressions formulated in terms of the measured 
concentrations of CBOD5 and TKN. Note that 
most of the CBOD5 measurements were found 
to be below the detection limit of 2 mg/l, 
introducing some uncertainty in term 'd.'. These 
non-detectable CBOD5 values were replaced by 
0 in the model calculations. Term ‘e’ includes a 
slightly reduced stoichiometric factor (i.e., 4.33 
vs. 64/14 or 4.57) to account for nitrogen 
demand (e.g., Ji 2007). 
 
Term ‘f’ in Eq. 3 represents the re-aeration 
process. The coefficient governing re-aeration is 
contingent upon velocity, depth and water 
temperature, as detailed in the works of Ji 
(2007), Langbein and Durum (1967), and 
Churchill et al. (1962). 
 
Term ‘g’ represents the measured sediment 
oxygen demand (SOD) (ARCADIS, 2013). 
 
Term ‘h’ in Eq. 3 represents the oxygen 
production attributed to algae. This production is 
straightforwardly represented through the 
utilization of a maximum growth rate, PM, the 
biomass parameter B, and growth-limiting 
functions associated with light (based on Steele), 
and temperature (Ji, 2007). It is assumed that 
growth is limited primarily by light intensity and 
temperature in this nutrient-rich and turbid 
estuary. The stochiometric factor of 1.3 is 
employed due to the assumption that nitrate 
serves as the primary source of dissolved oxygen 
(DO). Meanwhile, the stochiometric factor of 
2.67 corresponds to the ratio of DO production 
relative to carbon production. This factor is 
integrated into the equation to account for the 
biomass input derived from measured 
chlorophyll-a concentrations (in units of ug/l) 
which are converted to carbon concentrations (in 
mg/l units) based on an assumed carbon-to-
chlorophyll ratio.  
 
Finally, term ‘i’ in Eq. 3 is indicative of 
respiration, which is likewise assumed to be 
proportional to Phytoplanton biomass, 
incorporating an Arrhenius-type temperature 
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dependency (e.g., Ji, 2007). Admittedly, 
alternate formulations could have been chosen 
for all of the modeled source/sink terms. 
Nevertheless, as shown below, the tidal signal 
within the lower estuary remains sufficiently 
prominent, rendering intricate formulations 
unnecessary at this stage. Moreover, the model’s 
spreadsheet format facilitates user-friendly 
visualization of the potential effects of 
alternative formulations, which may either prove 
to be less sensitive or improve model accuracy. 
 
The model parameter values chosen for this 
application were selected based on estimates 
available in the literature (e.g., Lung 1993). 
 
Table 2: Representative model parameter values for the 
HRE 
 
Model 
Parameter/Rate 

Symbol 
 

Assigned 
Value 

drag coef. CD 0.025 
avg. water depth h 7.6 m 
reaeration coef. ks 0.4/d 
sed. oxy. demand SOD 9.5x10-7 

mg/l/s 
C to chl-a ratio α 30 
sat. value irradiance Is 7500 

BTU/ft2/d 
CBOD decay coef. kc 0.1/d 
NH3 decay coef. kN 0.1/d 
temp. adj. factors Θ1,Θ2, 

Θ3 
1.047, 1.068, 

1.08 
max. prod. rate Pm 1.8/d 
respiration rate  kr 0.2/d 
disp. coef., sta. W2 K 280-436 m2/s 

2.2 Data Smoothing/Finite Differencing 

The following procedure was used to evaluate 
the terms in Eq. 2 and Eq. 3. First, the robust 
sampling period spanning from August the 9th to 
August the 14th, 2010 was selected. This period 
coincided with the intensive field survey and the 
deployment of moored sensors. The continuous 
(i.e., 15-minute-interval) monitoring data and 
discrete (3-hour-interval) sampling data 
(ARCADIS, 2013) were assembled for this 
timeframe. Subsequently, these datasets were 
interpolated slightly to attain a standard 15-
minute time step. 
 

Next, finite-difference approximations were 
used to estimate the various terms in Eq. 2 and 
Eq. 3. To approximate the time derivatives, a 
center-differencing scheme was chosen. The 
selection was based on the advantage of having 
knowledge of the ‘future’ values of measured 
variables (e.g., DO, u, T, etc.) at each modeled 
time step (15-minute), which distinguishes this 
approach from predictive modeling methods:  
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕(𝜕𝜕+∆𝜕𝜕)−𝜕𝜕(𝜕𝜕−∆𝜕𝜕)
2∆𝜕𝜕 + 𝑂𝑂(∆𝑡𝑡2)    (4) 

 
This approach employed a second-order accurate 
(central-differencing) scheme to estimate the 
‘observed’ local time rates of change terms for u 
and DO in Eq. 2 and Eq. 3 (vs. ‘computed’ rates 
that sum the modeled processes). However, this 
introduces complexities owing to the 
amplification of 'noise' inherent in monitoring 
data, particularly in electronically monitored DO 
concentrations. Such noise becomes magnified 
when finite differences are computed (e.g., 
Chartrand, 2011). Thus, the analysis was 
performed both with and without application of 
a common smoothing filter (i.e., a Stavitzky-
Golay (S-G) filter; Stavitzky and Golay, 1964). 
This filter facilitates a moving-polynomial fit to 
the slightly noisy data. In this case, the moving 
fit at each time point was based on a second-
order polynomial and 7 data points (three on 
each side of the point, each separated by 15-
minutes). The application of this filter extended 
to the monitored DO, tidal current and tidal 
elevation time series throughout the modeling 
period from August 9th to August 12th, 2010. 
Note that comparable results were also obtained 
using a simple, 1-hour moving-average filter. 
However, as suggested by Ahnert and Abel 
(2007), the use of a moving average filter 
resulted in a slight reduction of some extreme 
values. 
 
Using the velocity and elevation data, the 
velocity gradient, surface slope and density 
gradient terms in Eq. 2 were approximated based 
on a forward-differencing scheme. This 
estimation involved the utilization of 
representative along-axis current velocities 
obtained from the closest monitoring stations. 
(i.e., station W4 speeds were used to calculate 
station W4 terms and station W1 speeds were 
used in station W2 calculations).  
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕(𝜕𝜕+∆𝜕𝜕)−𝜕𝜕(𝜕𝜕)
∆𝜕𝜕 + 𝑂𝑂(∆𝑥𝑥)    (5) 

 
The spatial gradient terms obtained through this 
process possess first-order accuracy. However, 
spatial gradients of tidal elevations and current 
within the HRE exhibit relatively small 
variations when compared to a full cycle of 
variation (Fig. 3, lower panels). Consequently, 
the use of the forward-difference scheme to 
provide a first-order estimate is considered 
appropriate in this case. 
 
To this end, a three-point spline interpolation 
method was applied to interpolate the available 
elevation data observed at stations W1, W3 and 
W5 during each modeled time step. 
Subsequently, the elevation gradient (of the 
surface-slope term in Eq. 2) was computed by 
applying a forward-difference operator over a 
relatively short upstream distance (500m) 
starting from station W1 along the smoothed 
series.  
 
Similarly, forward-differencing schemes were 
used to estimate the concentration gradients 
associated with the advective transport and 
turbulent diffusion (second-derivative) terms. 
DO concentrations vary moderately among 
lower HRE stations W1 and W2, but tend to 
fluctuate markedly at up-estuary stations (Fig. 
2). Furthermore, the influence of tides is less 
conspicuous in the upper HRE. Thus, the subject 
differencing scheme was not applied in the upper 
HRE. Instead, the present analysis focuses on the 
lower HRE. 

2.3 Dispersion Coefficient Calculations 

The model necessitates input data pertaining to 
longitudinal DO dispersion coefficients. Such 
coefficients (and dispersive fluxes) may be 
estimated directly from the high-temporal-
resolution measurements of salinity, DO and 
other variables. 
 
The comprehensive, tidally-averaged flux across 
a given cross-sectional area is the summation of 
the mean advective flux (driven by river flow) 
and the dispersive flux originating from several 
mechanisms (Fisher et al., 1979; Lucas, 2010). 
Temporal and spatial variations in estuarine 
velocities and material concentrations over a 

tidal cycle contribute to those dispersion 
mechanisms (which include tidal dispersion). An 
estimate for the longitudinal dispersion 
coefficient may be derived by summing those 
dispersive fluxes. 
 
As noted above, the HRE experiences very 
limited freshwater flow (averaging 10.9 m3s-1). 
Consequently, the mean advective flux in this 
estuary remains constrained . Nonetheless, the 
HRE is likely to exhibit significant tidal 
dispersion, primarily due to the topographic 
variations and shoreline irregularities (e.g., 
marsh coves) that occur within a tidal excursion 
(Geyer and Signell, 1992). It is worth reiterating 
that vertical stratification and lateral gradients in 
the HRE are weak. Associated shear dispersion 
mechanisms are assumed to be secondary 
processes and are not factored in this estimate. 
The contributions to the dispersive flux are 
assumed to be dominated by tidal dispersion. 
 
To evaluate tidal dispersion coefficients, the 
instantaneous flow velocity within the channel, 
denoted by u, and constituent concentration, c, 
may be dissected into components representing a 
tidal mean and tidal fluctuation (Dyer, 1977):  
   
𝑐𝑐 = ⟨𝑐𝑐⟩ + 𝑐𝑐′       (6) 
 
𝑢𝑢 = ⟨𝑢𝑢⟩ + 𝑢𝑢′      (7) 
 
Here, the notation '< >' denotes the tidal mean, 
while the primed quantities represent the 
instantaneous tidal fluctuations relative to the 
mean. The average tidal flux of a constituent 
through a cross-sectional area, σ, is expressed as 
follows: 
 
𝜎𝜎⟨𝑢𝑢𝑐𝑐⟩ = 𝜎𝜎⟨𝑢𝑢⟩⟨𝑐𝑐⟩ + 𝜎𝜎⟨𝑢𝑢′𝑐𝑐′⟩    (8) 

Considering that vertical and lateral variations 
are not considered in this context, , the final term 
in Eq. 8 represents the dispersive flux through a 
cross-sectional area attributed to ‘tidal pumping’ 
(Fischer et al., 1979): 
 
𝜎𝜎⟨𝑢𝑢′𝑐𝑐′⟩ = 𝜎𝜎⟨(𝑢𝑢−< 𝑢𝑢 >)(𝑐𝑐−< 𝑐𝑐 >)⟩   (9) 

The emergence of the tidal pumping flux and its 
contributions to tidal dispersion can be attributed 
to the fact that the tidal mean of the product of 
the current speed and concentration in Eq. 8 is 
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not equivalent to the product of their individual 
averages.  
 
Mathematically, it follows that the tidal pumping 
flux is a consequence of semi-diurnal variations 
(flooding and ebbing) of u and c that are not 
exactly in quadrature (Dyer, 1997; Fram et al., 
2007). From a physical standpoint, the tidal 
pumping mechanism has been associated with 
different horizontal flow patterns on either side 
of the mouth of a well-mixed estuary (i.e., jet-
like vs. distributed flow), and variations in flood 
and ebb concentrations near the estuary mouth 
(Fischer et al., 1979). Additionally, it's important 
to note that the tidal pumping mechanism 
consistently operates in a down-gradient manner 
(Lucas, 2010). Thus, the tidal pumping flux of 
DO in the lower reaches of the HRE is directed 
up-estuary, since DO concentrations generally 
decrease landward (Fig. 2). 
 
The longitudinal tidal dispersion coefficient, K, 
may be calculated from the tidal pumping term 
by assuming a simple (Fickian) gradient 
transport relation: 
  
𝐾𝐾 𝛥𝛥𝛥𝛥

𝛥𝛥𝛥𝛥 = ⟨(𝑢𝑢−< 𝑢𝑢 >)(𝑐𝑐−< 𝑐𝑐 >)⟩  (10) 

Application of Eq. 10 for observed salinities and 
current speeds recorded during each tidal cycle 
during from August 9th to August 14th, 2010 at 
lower HRE station W2 yields K values between 
280 m2/s and 436 m2/s (averaging 358 m2/s), 
which were incorporated into the diagnostic 
model’s dispersive transport term. 
 
Furthermore, the continuous DO data were used 
to compute dispersive fluxes of DO at Station 
W2. For an average cross-sectional area at 
station W2 of approximately 1,600 m2, the 
average up-estuary tidal pumping flux of DO at 
Station W2 exhibited a range between 
approximately 0.09 kg/s (324 kg/hour) and 0.23 
kg/s (828 kg/hour) during the study period. 
These dispersive fluxes partially ventilate the 
Lower HRE. 

3 RESULTS 

Fig. 4 displays an application of the model to the 
lower HRE at station 3.  
 

 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 4: Computed dynamic force balance at station W3. 
 
Though approximate, the model illustrates the 
prevailing dynamic force balance, which is 
primarily governed by surface slope and bottom 
friction terms. In contrast, the computed 
baroclinic forcing is relatively small due to weak 
density stratification. Likewise, advective inertia 
term exhibits a relatively modest magnitude. The 
local inertia term, on the other hand, remains 
relatively small during the peak-flood and ebb 
tide intervals, but gradually increases to peak 
values just before current reversals, occurring 
during slack-tide periods (i.e., when the friction 
term vanishes). 
 
Likewise, application of Eq. 3 results in a time 
series (Fig. 5) that quantifies the relative 
contributions of individual fate and transport 
terms to DO variability at station W2. For 
example, the first (top) panel of Fig. 5 juxtaposes 
the calculated terms on the right-hand side of Eq. 
3 (i.e., advective/dispersive transport, BOD 
decay, reaeration, SOD and P-R). Note that the 
computed terms for photosynthesis and 
respiration are combined here (as P-R) for ease 
of display. 
 
The middle panel of Fig. 5 compares the sum of 
these terms (i.e., ‘RHS’) to the ‘observed’ time 
rate of change of DO (i.e., to the centered-
differenced approximation on the left-hand side 
of Eq. 3). The bottom panel also compares the 
sum of these terms to the ‘observed’ time rate of 
change of DO, but with the latter smoothed by 
applying the 7-point S-G filter to the DO gage 
data. 
 
 
 

3    RESULTS
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Figure 5: Computed DO dynamic balance at station W2 
during intensive field survey. Upper panel: comparison of 
calculated fate and transport processes (on right side of 
Eq. 3). Middle panel: comparison of calculated time rate 
of change of observed oxygen concentration with the 
summation of simulated fate and transport processes (in 
upper panel). Bottom panel: same as the middle panel, but 
with 1-hour running average applied to the raw DO 
measurement data. 
 
As noted above, smoothing was employed here 
to mitigate noise magnification that tends to arise 
when numerical differencing schemes are 
applied to field data exhibiting minor 
fluctuations. Fig. 6 illustrates the corresponding 
results at station W4. 
 
As illustrated, the simplified model integrates 
the available datasets and displays the relative 
contributions of various control factors on short-
term DO variability. This ability to synthesize 
the available monitoring data, and assess 
dynamic balances transparently constitutes a 
fundamental advantage of the adopted approach. 
The simulated advective transport provides the 
greatest contribution to DO variability at lower 
HRE station W2 (‘transport’ in Fig. 5, top panel). 
UBOD serves as a DO sink here. The computed 
re-aeration term exhibits relative modesty and 
varies with the semi-diurnal current speed. SOD 
also is relatively small. While significant, the 
computed P-R term does not dominate the DO 
dynamics at this specific location and during this 
particular season. Nonetheless, it appears to be a 
more dominant source of diurnal DO variability 
in the middle and upper HRE. Overall, the 
calculations suggest that tidal advection largely 
governs DO dynamics at lower HRE station W2 

over the simulation period. Moreover, results 
indicate that the basic dynamic balance 
delineated by Eq. 3 accounts for the predominant 
diurnal and semi-diurnal variability at W2 (Fig. 
5, middle and bottom panels). However, very 
short-term variability (< 3 hours) is not 
reproduced by the model. 
 
In the upper HRE at station W4 (River Kilometer 
17.4), the relative contribution of photosynthesis 
and respiration increases (Fig. 6, upper panel), 
and the model accuracy decreases (lower panel). 
Notably, contributions from the P-R term appear 
to vary inversely with irradiance, with 
heightened simulated production occurring on 
days with low cloud cover. Concurrently, BOD 
decay consistently exerts a secondary, yet 
substantial, DO sink. Conversely, the 
contributions of reaeration and SOD remain 
relatively minor during the simulation interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Computed DO dynamic balance at 
station W4 during intensive field survey. Upper panel: 
comparison of the calculated fate and transport processes 
(on right side of Eq. 3). Middle panel: comparison of the 
calculated time rate of change of observed oxygen 
concentration with the sum of simulated fate and processes 
(in upper panel). Bottom panel: same as the middle panel, 
but with 1-hour running average applied to the raw DO 
measurement data. 
 
Similar to the P-R term, the model simulates a 
relatively large advective transport term. 
However, it does not reproduce very short-
period variability (<3 hours) or peaks. An 
interesting feature at station W4 is the high 
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degree of ‘observed’ DO variability (Fig. 6, 
middle panel). This highly transient response is 
sometimes apparent even with data smoothing 
applied (Fig. 6, lower panel). Such short-term 
(high-frequency) variability also may be 
associated with complex photosynthesis and 
respiration processes that are not captured by 
simplified model formulations (such as the 
Steele and Arrhenius formulations used here). 
This effect illustrates a potential limitation of 
some water quality model formulations, as 
revealed by high-temporal-resolution DO 
monitoring data. 
 
The decomposed fate and transport terms were 
subsequently integrated (using a simple Simpson 
Rule integration scheme in a spreadsheet format) 
to simulate a DO time series at station W2 (Fig. 
7). This figure provides insight into the effects of 
the various dynamic processes on the resulting 
DO concentration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Comparison of observed DO variations at 
station W2 vs. contributions from various processes. 
 
Fig. 7 (top panel) demonstrates that advective 
and dispersive transport predominantly explain 
the observed DO variability at this station. The 
individual plots in Fig. 7 isolate contributions 
from other basic processes controlling the 
dynamics of DO . By incorporating contributions 
from all terms in the integrations (especially 
BOD in the latter half), the simplified model can 
track some observed DO variations (Fig. 7, 
lowermost panel). 
 

The integrations of the fate and transport terms 
at the upper estuary station W4 are plotted in Fig. 
8. The integration of all terms provides a less 
accurate fit to the observed DO variability at this 
station. In this case, the predominance of tidal 
controls is diminished. Clearly, the model is less 
accurate when it simulates processes other than 
tidal displacements of a mean concentration 
gradient. Also, high frequency variability is 
noticeable in the monitored DO time series (Fig. 
8, lowermost panel) but not in the diagnostic 
model results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Comparison of observed DO variations at 
station W4 vs. contributions from various processes. 

4 DISCUSSION 

Variability on short temporal scales poses 
difficult challenges to the field of oceanography 
(McGillicuddy et al., 2017). These high 
frequency fluctuations can complicate the 
interpretation of longer-term trends in the mean 
properties of the physical, biological, and 
chemical characteristics of the marine 
environment. However, such fluctuations may 
be significant in their own right, and may 
actually contribute to the overall mean properties 
(e.g., Eq. 8). 
 
The study presented herein illustrates the utility 
of a simple fate and transport model primarily 
based on continuous monitoring data for the 
purpose of synthesizing existing information and 
quantifying factors influencing short-term DO 
variability. In this specific case, both continuous 

4    DISCUSSION
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monitoring data and discrete survey data were 
accessible for a concurrent time frame. 
Furthermore, the studied waterway is 
characterized by its narrowness and the 
dominance of tides and up-estuary sources. This 
convergence of data availability and simplified 
environmental conditions offered an opportunity 
for the preliminary assessment of basic estuarine 
fate and transport processes. Moreover, it served 
as an illustration of a scenario in which DO 
variability may be modeled in an estuarine reach 
without an immediate necessity for an extensive 
numerical analysis of the many biogeochemical 
processes that control DO.  
 
Although not intended to replace more 
comprehensive hydrodynamic/ water quality 
models, a ‘first-cut’ diagnostic model evaluation 
may offer some advantages, such as simplicity 
and transparency, which may be absent in some 
complex numerical models. Moreover, by 
directly addressing the continuous DO time 
series data, the simplified model illustrates the 
potential of such data to identify dominant 
processes and potential limitations of infrequent 
sampling. Depending on the variability of 
dominant controls and other factors, intermittent 
sampling may fail to capture substantial short-
term variability. 
 
The moored arrays yielded high-temporal-
resolution DO monitoring data, which introduces 
additional challenges for model validation. In 
this case, the continuous (i.e., 15-minute) 
sampling rate can capture DO, temperature and 
salinity fluctuations with periods as short as 30+ 
minutes (based on the well-known, Nyquist 
sampling theorem). In contrast, the supporting 
discrete sampling data (e.g., chlorophyll a, 
CBOD5, NBOD5, TKN, NH3, NO2, TP, OP, 
etc.), which were collected at three-hour 
intervals, can only discern fluctuations with 
periods as short as 6+ hours (i.e., approximately 
quarter-diurnal). Consequently, the discrete 
samples were unable to detect shorter-term 
variability (i.e., < 6 hours). Moreover, the 
modeled kinetic processes (such as oxygen 
production and respiration) that depend on such 
variables, also failed to resolve variations at 
periods shorter than 6 hours. Thus, it is not 
surprising that the simplified model does not 
replicate some of the transients (‘spikes’) in the 
‘observed’ DO transport, especially at station 

W4 (Figs. 5-6, middle panels). However, the 
model otherwise tracked the general temporal 
trends in the observed data. Therefore, it appears 
that the lack of comparable resolution of the 
discrete sampling data did not substantially 
impede the ability of the model to track diurnal 
and semi-diurnal (i.e., 12.4-hour-period) 
variability in the lower reaches of the HRE (Fig. 
7, lower panel). In this urbanized, mesotidal 
estuary -- where tidal displacements and point-
source discharges are large – semi-diurnal tidal 
fluctuations can dominate (e.g., Fig. 6), thereby 
extending beyond the direct impact area of the 
discharge.  
 
While the focus of this paper is on tidal transport 
and short-term variability, it is essential to 
acknowledge that the simplified model relies on 
a relatively brief and intensive monitoring period 
(5 days). Consequently, it does not encompass 
the simulation of seasonal DO trends. The model 
also omits the representation of long-term effects 
of DO sinks (e.g., UBOD decay. Instead, the 
emphasis is on short-term variability, and the 
model serves as an adequate tool to evaluate the 
effects of such sinks over the 5-day study period.  
 
For example, in Fig. 9 (bottom panel), the impact 
of UBOD removal is illustrated. Figs. 5-6 
suggest that while important, UBOD may not 
constitute the dominant control of DO variability 
at stations W2 and W4. Fig. 9 further suggests 
that a hypothetical scenario involving the 
complete removal of UBOD at station W2 would 
increase DO levels by about 1 mg/l at station W2 
during this particular period. However, it is 
essential to note that to comprehensively 
simulate the various seasonal biogeochemical 
processes associated with UBOD, extended 
sampling and more intricate modeling efforts 
would be requisite.  
 
This example underscores the need for an 
improved diagnostic model designed to more 
precisely quantify the various sources, sinks and 
transformation processes over a longer 
simulation interval (e.g., several weeks). 
Alternatively, a more detailed diagnostic model 
may be used to target a short-term event 
triggered by a large change in loading (e.g., 
hypoxia following an algal bloom and crash 
event, or a wastewater treatment plant upset 
following a catastrophic storm). 
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In addition to the constraints posed by sampling 
resolution and duration, it is possible that simple 
P-R formulations (such as those employed here) 
may fall short in simulating the exceedingly 
ephemeral dynamics of algal effects, as 
evidenced by the continuous monitored DO data. 
That is, not only are observed peaks of chl-a (Fig. 
3) inadequately resolved by 3-hour sampling, but 
also their transient effects on DO levels may not 
be resolved using relatively smooth formulations 
for P-R (unless the model formulation is adapted 
to accommodate such highly variable algal 
biomass).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Model sensitivity analysis for simulated DO at 
station W2: Top panel: base case (from Fig. 7). Second 
panel from top: effect of 20% increase in photosynthesis. 
third panel: effect of 20% decrease in respiration. fourth 
panel: model scenario simulation of complete BOD 
removal. Bottom panel: effect of 40% decrease in current 
speed. 
 
Another constraint of the model lies in the semi-
empirical nature of the adjustable model 
parameters. While, in most instances, 
conventional literature values were selected, 
some degree of engineering judgment was still 
required to fine tune the model. Unfortunately, it 
is difficult to impose restrictions on this selection 
process so as to yield a unique solution and and 
a clear-cut alignment with the observed 
continuous data, even when employing a limited 
number of rate constants, as demonstrated in 
Table 2. Fig. 9 (second and third panels) 
illustrates how sensitive the simplified model is 
to a variation (+/- 20%) in the most sensitive 

model coefficients (i.e., the coefficients for the 
photosynthesis and respiration terms). Such 
“tuning” may improve the model’s performance 
in comparison to the base case (top panel); 
however, it lacks a substantive justification. 
Model uncertainty arising from parameter 
selection is likely to be compounded if equations 
for many state variables, each associated with an 
additional set of rate constants, were to be 
incorporated (as in common practice).   
 
Hence, numerous factors may contribute to 
model uncertainty in this case. These include 
aspects such as data representativeness, data 
smoothing techniques, the inherent 
approximations of finite differencing schemes 
(1st- and 2nd-order accurate), the employment of 
the Simpson rule integration scheme (2nd order 
accurate), and the selection of model rate 
coefficients. For example, over an extended 
model run, errors in the integration scheme may 
accumulate and require corrections. This could 
potentially explain certain disparities between 
the observed and simulated DO concentrations at 
the end of the simulations. However, model 
sensitivity results indicate that other influential 
factors significantly contribute to these 
disparities. 
 
From a practical standpoint, the outcomes of this 
study may provide insights into the potential 
ramifications of sedimentation and shoaling on 
DO levels within comparable estuarine 
environments. Shoaling enhances the effect of 
bottom friction, dissipates tidal energy, and 
generally results in reduced current speeds. In 
such cases, the present model forecasts a 
corresponding decrease in advective DO 
transport, and a reduction in the range of DO 
variability. For example, Fig. 9 (lower panel) 
displays effects of a 40% decrease in the input 
current speed, which results in a shallower DO 
response, with reduced DO tidal variability 
compared to the base case shown in Figure 7 
(bottom panel).   
 
Alternatively, dredging activities and the 
establishment of dredged material disposal 
islands have the potential to partially obstruct 
tidal currents within these narrow estuaries and 
may increase (‘funnel’) local current speeds. In 
such cases, the simplified model suggests that 
the range of DO variability may increase. Such 
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conclusions can lend support to ecologically 
responsible dredged material management 
initiatives. 
 
The present approach is adaptable for estimating 
tidal dispersive fluxes as well. To this end, the 
expression in Eq. 10 was iteratively computed at 
station W2 and then multiplied by the water 
density (approximately 1,020 kg/m3). As a 
result, a down-estuary tidal dispersive flux of 
UBOD was determined, exhibiting variations 
ranging from 0.03 kg/s to 0.79 kg/s. For 
comparison, the mean ‘advective’ flux of UBOD 
at station W2 attributed to river discharge was 
calculated to be approximately 0.07 kg/s This 
calculation entails the product of the mean 
discharge (~ 10.9 m3s-1), the mean UBOD 
concentration (~ 6 ppm), and mean water density 
(~ 1,020 kg/m3). This result suggests that tidal 
pumping may be a dominant dispersion 
mechanism in this system. It is important to note 
that other possible mechanisms may partially 
contribute to longitudinal dispersion in the HRE, 
such as vertical/lateral shear or oscillatory shear 
flow, but these factors have been omitted in the 
current analysis. 

5 CONCLUSIONS 

Short-term DO variability is a salient feature of 
the narrow and tidally influenced HRE. The 
simplified diagnostic model presented in this 
study, focusing on the lower HRE, suggests that 
advective tidal transport stands out as the 
primary driver of short-term DO variability. 
Ancillary processes, including UBOD and SOD, 
appear to exert secondary influences on short-
term variability. Furthermore, longitudinal 
dispersion associated with tidal pumping 
facilitates the inflow of dissolved oxygen into the 
lower reaches of the HRE, while exporting 
UBOD from upstream point sources. The 
findings of this study suggest that under specific 
conditions (e.g., for narrow, tidally dominated 
estuaries with upstream sources), the simple 
model presented herein proves a valuable tool for 
amalgamating existing monitoring data, 
monitoring short-term DO trends, and providing 
a transparent depiction of the underlying 
dynamic processes. 
 

The results also indicate that certain smooth 
model formulations for photosynthesis and 
respiration may not adequately capture high-
frequency variability. To address this issue, 
high-temporal-resolution data (such as data 
collected here), and alternative model 
formulations may be necessary. The simplified 
spreadsheet format employed in this model may 
serve as a practical tool to investigate the impacts 
of alternate water quality model formulations. 
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NOTATION 
The following symbols are used in this paper: 
t = time; 
x = along-axis distance (positive landward); 
u = vertically averaged, along axis current 
velocity component (positive landward); 
η = water surface elevation 
ρ = water density 
g = gravitational acceleration 
h = average water depth 
CD = drag coefficient 
[DO] = dissolved oxygen concentration; 
[DO]s = dissolved oxygen saturation 
concentration 
[UBOD] = ultimate carbonaceous BOD 
[UNBOD] = ultimate nitrogenous BOD 
SOD = sediment oxygen demand 
K = Longitudinal (along-channel) dispersion 
coefficient 
I = irradiance  
Is = saturation value of the irradiance  
T = water temperature 
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kC = CBOD decay coefficient 
kN = ammonia decay coefficient 
ks = Langbein & Durum reaeration rate 
coefficient (ks = 7.6u/h1.33) 
Pm = maximum production rate  
kr = respiration constant 
 = temperature adjustment factor (typically ~ 
1.047) 
B = algal biomass 
[chl-a] = chlorophyll-a concentration 
α = chlorophyll-a to carbon conversion factor 
c = constituent concentration 
 
Operators and Superscripts for c and u 
< > = tidal average 
‘ = tidal fluctuation 
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